Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Am Chem Soc ; 144(7): 2905-2920, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1683927

RESUMEN

Drugs targeting SARS-CoV-2 could have saved millions of lives during the COVID-19 pandemic, and it is now crucial to develop inhibitors of coronavirus replication in preparation for future outbreaks. We explored two virtual screening strategies to find inhibitors of the SARS-CoV-2 main protease in ultralarge chemical libraries. First, structure-based docking was used to screen a diverse library of 235 million virtual compounds against the active site. One hundred top-ranked compounds were tested in binding and enzymatic assays. Second, a fragment discovered by crystallographic screening was optimized guided by docking of millions of elaborated molecules and experimental testing of 93 compounds. Three inhibitors were identified in the first library screen, and five of the selected fragment elaborations showed inhibitory effects. Crystal structures of target-inhibitor complexes confirmed docking predictions and guided hit-to-lead optimization, resulting in a noncovalent main protease inhibitor with nanomolar affinity, a promising in vitro pharmacokinetic profile, and broad-spectrum antiviral effect in infected cells.


Asunto(s)
Antivirales/farmacología , Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antivirales/metabolismo , Antivirales/farmacocinética , Dominio Catalítico , Chlorocebus aethiops , Proteasas 3C de Coronavirus/química , Inhibidores de Cisteína Proteinasa/metabolismo , Inhibidores de Cisteína Proteinasa/farmacocinética , Evaluación Preclínica de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacocinética , Células Vero
2.
Science ; 372(6547): 1169-1175, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1583231

RESUMEN

Emergent resistance to all clinical antibiotics calls for the next generation of therapeutics. Here we report an effective antimicrobial strategy targeting the bacterial hydrogen sulfide (H2S)-mediated defense system. We identified cystathionine γ-lyase (CSE) as the primary generator of H2S in two major human pathogens, Staphylococcus aureus and Pseudomonas aeruginosa, and discovered small molecules that inhibit bacterial CSE. These inhibitors potentiate bactericidal antibiotics against both pathogens in vitro and in mouse models of infection. CSE inhibitors also suppress bacterial tolerance, disrupting biofilm formation and substantially reducing the number of persister bacteria that survive antibiotic treatment. Our results establish bacterial H2S as a multifunctional defense factor and CSE as a drug target for versatile antibiotic enhancers.


Asunto(s)
Antibacterianos/farmacología , Cistationina gamma-Liasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Sulfuro de Hidrógeno/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/química , Antibacterianos/metabolismo , Biopelículas , Cristalografía por Rayos X , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Descubrimiento de Drogas , Farmacorresistencia Bacteriana , Sinergismo Farmacológico , Tolerancia a Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo
3.
Molecules ; 26(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1518621

RESUMEN

In continuation of our previous effort, different in silico selection methods were applied to 310 naturally isolated metabolites that exhibited antiviral potentialities before. The applied selection methods aimed to pick the most relevant inhibitor of SARS-CoV-2 nsp10. At first, a structural similarity study against the co-crystallized ligand, S-Adenosyl Methionine (SAM), of SARS-CoV-2 nonstructural protein (nsp10) (PDB ID: 6W4H) was carried out. The similarity analysis culled 30 candidates. Secondly, a fingerprint study against SAM preferred compounds 44, 48, 85, 102, 105, 182, 220, 221, 282, 284, 285, 301, and 302. The docking studies picked 48, 182, 220, 221, and 284. While the ADMET analysis expected the likeness of the five candidates to be drugs, the toxicity study preferred compounds 48 and 182. Finally, a density-functional theory (DFT) study suggested vidarabine (182) to be the most relevant SARS-Cov-2 nsp10 inhibitor.


Asunto(s)
Antivirales/química , Productos Biológicos/química , SARS-CoV-2/metabolismo , Proteínas Reguladoras y Accesorias Virales/antagonistas & inhibidores , Antivirales/metabolismo , Antivirales/uso terapéutico , Sitios de Unión , Productos Biológicos/metabolismo , Productos Biológicos/uso terapéutico , COVID-19/patología , Teoría Funcional de la Densidad , Humanos , Ligandos , Simulación del Acoplamiento Molecular , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , SARS-CoV-2/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Vidarabina/química , Vidarabina/metabolismo , Vidarabina/uso terapéutico , Proteínas Reguladoras y Accesorias Virales/metabolismo , Tratamiento Farmacológico de COVID-19
4.
Angew Chem Int Ed Engl ; 60(33): 18231-18239, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1303235

RESUMEN

Protein crystallography (PX) is widely used to drive advanced stages of drug optimization or to discover medicinal chemistry starting points by fragment soaking. However, recent progress in PX could allow for a more integrated role into early drug discovery. Here, we demonstrate for the first time the interplay of high throughput synthesis and high throughput PX. We describe a practical multicomponent reaction approach to acrylamides and -esters from diverse building blocks suitable for mmol scale synthesis on 96-well format and on a high-throughput nanoscale format in a highly automated fashion. High-throughput PX of our libraries efficiently yielded potent covalent inhibitors of the main protease of the COVID-19 causing agent, SARS-CoV-2. Our results demonstrate, that the marriage of in situ HT synthesis of (covalent) libraires and HT PX has the potential to accelerate hit finding and to provide meaningful strategies for medicinal chemistry projects.


Asunto(s)
Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Cisteína Proteinasa/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Acrilamidas/síntesis química , Acrilamidas/metabolismo , Acrilatos/síntesis química , Acrilatos/metabolismo , Dominio Catalítico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Cristalografía por Rayos X , Inhibidores de Cisteína Proteinasa/síntesis química , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Unión Proteica , SARS-CoV-2/química , Bibliotecas de Moléculas Pequeñas/síntesis química
5.
Angew Chem Int Ed Engl ; 60(35): 19191-19200, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1279344

RESUMEN

SARS-CoV-2 contains a positive single-stranded RNA genome of approximately 30 000 nucleotides. Within this genome, 15 RNA elements were identified as conserved between SARS-CoV and SARS-CoV-2. By nuclear magnetic resonance (NMR) spectroscopy, we previously determined that these elements fold independently, in line with data from in vivo and ex-vivo structural probing experiments. These elements contain non-base-paired regions that potentially harbor ligand-binding pockets. Here, we performed an NMR-based screening of a poised fragment library of 768 compounds for binding to these RNAs, employing three different 1 H-based 1D NMR binding assays. The screening identified common as well as RNA-element specific hits. The results allow selection of the most promising of the 15 RNA elements as putative drug targets. Based on the identified hits, we derive key functional units and groups in ligands for effective targeting of the RNA of SARS-CoV-2.


Asunto(s)
Genoma , ARN Viral/metabolismo , SARS-CoV-2/genética , Bibliotecas de Moléculas Pequeñas/metabolismo , Evaluación Preclínica de Medicamentos , Ligandos , Estructura Molecular , Conformación de Ácido Nucleico , Espectroscopía de Protones por Resonancia Magnética , ARN Viral/química , Bibliotecas de Moléculas Pequeñas/química
6.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1273456

RESUMEN

Although the approved vaccines are proving to be of utmost importance in containing the Coronavirus disease 2019 (COVID-19) threat, they will hardly be resolutive as new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, a single-stranded RNA virus) variants might be insensitive to the immune response they induce. In this scenario, developing an effective therapy is still a dire need. Different targets for therapeutic antibodies and diagnostics have been identified, among which the SARS-CoV-2 spike (S) glycoprotein, particularly its receptor-binding domain, has been defined as crucial. In this context, we aim to focus attention also on the role played by the S N-terminal domain (S1-NTD) in the virus attachment, already recognized as a valuable target for neutralizing antibodies, in particular, building on a cavity mapping indicating the presence of two druggable pockets and on the recent literature hypothesizing the presence of a ganglioside-binding domain. In this perspective, we aim at proposing S1-NTD as a putative target for designing small molecules hopefully able to hamper the SARS-CoV-2 attachment to host cells.


Asunto(s)
SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sitios de Unión , COVID-19/patología , COVID-19/terapia , COVID-19/virología , Reposicionamiento de Medicamentos , Humanos , Simulación de Dinámica Molecular , Ácido N-Acetilneuramínico/análogos & derivados , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacología , Ácido N-Acetilneuramínico/uso terapéutico , Unión Proteica , Dominios Proteicos , SARS-CoV-2/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Glicoproteína de la Espiga del Coronavirus/química , Acoplamiento Viral/efectos de los fármacos
7.
Bioorg Med Chem Lett ; 42: 128067, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1213059

RESUMEN

The outbreak of coronavirus (CoV) disease 2019 (COVID-19) caused by the severe acute respiratory syndrome CoV-2 (SARS-CoV-2) has turned into a pandemic. The enzyme 3C-like protease (3CLpro) is essential for the maturation of viral polyproteins in SARS-CoV-2 and is therefore regarded as a key drug target for treating the disease. To identify 3CLpro inhibitors that can suppress SARS-CoV-2 replication, we performed a virtual screening of 500,282 compounds in a Korean compound bank. We then subjected the top computational hits to inhibitory assays against 3CLpro in vitro, leading to the identification of a class of non-covalent inhibitors. Among these inhibitors, compound 7 showed an EC50 of 39.89 µM against SARS-CoV-2 and CC50 of 453.5 µM. This study provides candidates for the optimization of potent 3CLpro inhibitors showing antiviral effects against SARS-CoV-2.


Asunto(s)
Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antivirales/metabolismo , Chlorocebus aethiops , Proteasas 3C de Coronavirus/metabolismo , Evaluación Preclínica de Medicamentos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/metabolismo , Unión Proteica , República de Corea , Bibliotecas de Moléculas Pequeñas/metabolismo , Células Vero
8.
Bioorg Chem ; 111: 104862, 2021 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1188327

RESUMEN

For the COVID-19 pandemic caused by SARS-CoV-2, there are currently no effective drugs or vaccines to treat this coronavirus infection. In this study, we focus on the main protease enzyme of SARS-CoV-2, 3CLpro, which is critical for viral replication. We employ explicit solvent molecular dynamics simulations of about 150 compounds docked into 3CLpro's binding site and that had emerged as good main protease ligands from our previous in silico screening of over 1.2 million compounds. By incoporating protein dynamics and applying a range of structural descriptors, such as the ability to form specific contacts with the catalytic dyad residues of 3CLpro and the structural fluctuations of the ligands in the binding site, we are able to further refine our compound selection. Fourteen compounds including estradiol shown to be the most promising based on our calculations were procured and screened against recombinant 3CLpro in a fluorescence assay. Eight of these compounds have significant activity in inhibiting the SARS-CoV-2 main protease. Among these are corilagin, a gallotannin, and lurasidone, an antipsychotic drug, which emerged as the most promising natural product and drug, respectively, and might thus be candidates for drug repurposing for the treatment of COVID-19. In addition, we also tested the inhibitory activity of testosterone, and our results reveal testosterone as possessing moderate inhibitory potency against the 3CLpro enzyme, which may thus provide an explanation why older men are more severely affected by COVID-19.


Asunto(s)
Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/metabolismo , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/metabolismo , Antivirales/metabolismo , Sitios de Unión , Proteasas 3C de Coronavirus/metabolismo , Pruebas de Enzimas , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica
10.
J Phys Chem B ; 125(10): 2533-2550, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1114680

RESUMEN

The novel RNA virus, severe acute respiratory syndrome coronavirus II (SARS-CoV-2), is currently the leading cause of mortality in 2020, having led to over 1.6 million deaths and infecting over 75 million people worldwide by December 2020. While vaccination has started and several clinical trials for a number of vaccines are currently underway, there is a pressing need for a cure for those already infected with the virus. Of particular interest in the design of anti-SARS-CoV-2 therapeutics is the human protein angiotensin converting enzyme II (ACE2) to which this virus adheres before entry into the host cell. The SARS-CoV-2 virion binds to cell-surface bound ACE2 via interactions of the spike protein (s-protein) on the viral surface with ACE2. In this paper, we use all-atom molecular dynamics simulations and binding enthalpy calculations to determine the effect that a bound ACE2 active site inhibitor (MLN-4760) would have on the binding affinity of SARS-CoV-2 s-protein with ACE2. Our analysis indicates that the binding enthalpy could be reduced for s-protein adherence to the active site inhibitor-bound ACE2 protein by as much as 1.48-fold as an upper limit. This weakening of binding strength was observed to be due to the destabilization of the interactions between ACE2 residues Glu-35, Glu-37, Tyr-83, Lys-353, and Arg-393 and the SARS-CoV-2 s-protein receptor binding domain (RBD). The conformational changes were shown to lead to weakening of ACE2 interactions with SARS-CoV-2 s-protein, therefore reducing s-protein binding strength. Further, we observed increased conformational lability of the N-terminal helix and a conformational shift of a significant portion of the ACE2 motifs involved in s-protein binding, which may affect the kinetics of the s-protein binding when the small molecule inhibitor is bound to the ACE2 active site. These observations suggest potential new ways for interfering with the SARS-CoV-2 adhesion by modulating ACE2 conformation through distal active site inhibitor binding.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Inhibidores de Proteasas/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Sitios de Unión , COVID-19/patología , COVID-19/virología , Dominio Catalítico , Diseño de Fármacos , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , SARS-CoV-2/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Termodinámica
11.
Bioorg Med Chem ; 33: 116040, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1064895

RESUMEN

The COVID-19 pandemic continues without specific treatment. In this study it is proposed compounds that can be developed as adjuvant / complementary drugs against COVID-19. Through a search for molecular docking, for the development of a new drug using pharmacological compounds targeting the b1 region in neuropilin-1 (NRP1), which is important for the interaction with the S1 region of the S-Protein of SARS-CoV-2, to slow down the infection process of this virus. A molecular docking was performed using almost 500,000 compounds targeted to interact in the region between amino acids (Thr316, Asp320, Ser346, Thr349, and Tyr353) in NRP1 to determine compounds able to hinder the interaction with the S1 region in the S-Protein. In this study, ten compounds are proposed as potential inhibitors between S1 region in the S-Protein of SARS-CoV-2 with the b1 region in NRP1, to develop a new adjuvant / complementary drug against COVID-19, and to hinder the interaction between SARS-CoV-2 and human cells, with a high probability to be safe in humans, validated by web servers for prediction of ADME and toxicity (PreADMET).


Asunto(s)
Simulación del Acoplamiento Molecular , Neuropilina-1/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Antivirales/química , Antivirales/metabolismo , Antivirales/uso terapéutico , Sitios de Unión , COVID-19/patología , COVID-19/virología , Reposicionamiento de Medicamentos , Humanos , Neuropilina-1/metabolismo , SARS-CoV-2/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Tratamiento Farmacológico de COVID-19
12.
Angew Chem Int Ed Engl ; 60(12): 6799-6806, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: covidwho-985937

RESUMEN

Activity-based probes are valuable tools for chemical biology. However, finding probes that specifically target the active site of an enzyme remains a challenging task. Herein, we present a ligand selection strategy that allows to rapidly tailor electrophilic probes to a target of choice and showcase its application for the two cysteine proteases of SARS-CoV-2 as proof of concept. The resulting probes were specific for the active site labeling of 3CLpro and PLpro with sufficient selectivity in a live cell model as well as in the background of a native human proteome. Exploiting the probes as tools for competitive profiling of a natural product library identified salvianolic acid derivatives as promising 3CLpro inhibitors. We anticipate that our ligand selection strategy will be useful to rapidly develop customized probes and discover inhibitors for a wide range of target proteins also beyond corona virus proteases.


Asunto(s)
Proteasas 3C de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/química , Inhibidores de Cisteína Proteinasa/química , Técnicas de Sonda Molecular , Sondas Moleculares/química , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/química , Dominio Catalítico , Proteasas 3C de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Inhibidores de Cisteína Proteinasa/metabolismo , Células Hep G2 , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Prueba de Estudio Conceptual , Unión Proteica , Bibliotecas de Moléculas Pequeñas/metabolismo , Relación Estructura-Actividad
13.
Nat Commun ; 11(1): 5047, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: covidwho-841208

RESUMEN

COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments were progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease.


Asunto(s)
Betacoronavirus/química , Cisteína Endopeptidasas/química , Fragmentos de Péptidos/química , Proteínas no Estructurales Virales/química , Betacoronavirus/enzimología , Sitios de Unión , Dominio Catalítico , Proteasas 3C de Coronavirus , Cristalografía por Rayos X , Cisteína Endopeptidasas/metabolismo , Diseño de Fármacos , Espectrometría de Masas , Modelos Moleculares , Fragmentos de Péptidos/metabolismo , Conformación Proteica , SARS-CoV-2 , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Electricidad Estática , Proteínas no Estructurales Virales/metabolismo
14.
Proc Natl Acad Sci U S A ; 117(29): 17195-17203, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: covidwho-624792

RESUMEN

The vast majority of intracellular protein targets are refractory toward small-molecule therapeutic engagement, and additional therapeutic modalities are needed to overcome this deficiency. Here, the identification and characterization of a natural product, WDB002, reveals a therapeutic modality that dramatically expands the currently accepted limits of druggability. WDB002, in complex with the FK506-binding protein (FKBP12), potently and selectively binds the human centrosomal protein 250 (CEP250), resulting in disruption of CEP250 function in cells. The recognition mode is unprecedented in that the targeted domain of CEP250 is a coiled coil and is topologically featureless, embodying both a structural motif and surface topology previously considered on the extreme limits of "undruggability" for an intracellular target. Structural studies reveal extensive protein-WDB002 and protein-protein contacts, with the latter being distinct from those seen in FKBP12 ternary complexes formed by FK506 and rapamycin. Outward-facing structural changes in a bound small molecule can thus reprogram FKBP12 to engage diverse, otherwise "undruggable" targets. The flat-targeting modality demonstrated here has the potential to expand the druggable target range of small-molecule therapeutics. As CEP250 was recently found to be an interaction partner with the Nsp13 protein of the SARS-CoV-2 virus that causes COVID-19 disease, it is possible that WDB002 or an analog may exert useful antiviral activity through its ability to form high-affinity ternary complexes containing CEP250 and FKBP12.


Asunto(s)
Actinobacteria/genética , Antivirales/farmacología , Genoma Bacteriano , Macrólidos/farmacología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína 1A de Unión a Tacrolimus/química , Proteína 1A de Unión a Tacrolimus/metabolismo , Actinobacteria/metabolismo , Secuencia de Aminoácidos , Antivirales/química , Antivirales/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Evolución Molecular , Células HEK293 , Humanos , Macrólidos/química , Macrólidos/metabolismo , Modelos Moleculares , Conformación Proteica , Homología de Secuencia , Sirolimus/química , Sirolimus/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
15.
Sci Rep ; 10(1): 13093, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: covidwho-697117

RESUMEN

A novel coronavirus, named SARS-CoV-2, emerged in 2019 in China and rapidly spread worldwide. As no approved therapeutics exists to treat COVID-19, the disease associated to SARS-Cov-2, there is an urgent need to propose molecules that could quickly enter into clinics. Repurposing of approved drugs is a strategy that can bypass the time-consuming stages of drug development. In this study, we screened the PRESTWICK CHEMICAL LIBRARY composed of 1,520 approved drugs in an infected cell-based assay. The robustness of the screen was assessed by the identification of drugs that already demonstrated in vitro antiviral effect against SARS-CoV-2. Thereby, 90 compounds were identified as positive hits from the screen and were grouped according to their chemical composition and their known therapeutic effect. Then EC50 and CC50 were determined for a subset of 15 compounds from a panel of 23 selected drugs covering the different groups. Eleven compounds such as macrolides antibiotics, proton pump inhibitors, antiarrhythmic agents or CNS drugs emerged showing antiviral potency with 2 < EC50 ≤ 20 µM. By providing new information on molecules inhibiting SARS-CoV-2 replication in vitro, this study provides information for the selection of drugs to be further validated in vivo. Disclaimer: This study corresponds to the early stages of antiviral development and the results do not support by themselves the use of the selected drugs to treat SARS-CoV-2 infection.


Asunto(s)
Betacoronavirus/fisiología , Bibliotecas de Moléculas Pequeñas/química , Animales , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Betacoronavirus/aislamiento & purificación , COVID-19 , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Aprobación de Drogas , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Humanos , Pandemias , Neumonía Viral/patología , Neumonía Viral/virología , SARS-CoV-2 , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Células Vero , Replicación Viral/efectos de los fármacos
16.
Med Chem ; 17(4): 380-395, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-688767

RESUMEN

BACKGROUND: Globally, over 4.3 million laboratory confirmed cases of COVID-19 have been reported from over 105 countries. No FDA approved antiviral is available for the treatment of this infection. Zhavoronkov et al., with their generative chemistry pipeline, have generated structures that can be potential novel drug-like inhibitors for COVID-19, provided they are validated. 3C-like protease (3CLP) is a homodimeric cysteine protease that is present in coronaviruses. Interestingly, 3CLP is 96.1% structurally similar between SARS-CoV and SARS-CoV-2. OBJECTIVE: To evaluate interaction of generated structures with 3CLP of SARS-CoV (RCSB PDB ID: 4MDS). METHODS: Crystal structure of human SARS-CoV with a non-covalent inhibitor with resolution: 1.598 Å was obtained and molecular docking was performed to evaluate the interaction with generated structures. The MM-GBSA and IFD-SP were performed to narrow down to the structures with better binding energy and IFD score. The ADME analysis was performed on top 5 hits and further MD simulation was employed for top 2 hits. RESULTS: In XP docking, IFD-SP and molecular dynamic simulation studies, the top 2 hits 32 and 61 showed interaction with key amino acid residue GLU166. Structure 61, also showed interaction with HIS164. These interactions of generated structure 32 and 61, with GLU166 and HIS164, indicate the binding of the selected drug within the close proximity of 3CLP. In the MD simulation, the protein- ligand complex of 4MDS and structure 61 was found to be more stable for 10ns. CONCLUSION: These identified structures can be further assessed for their antiviral activity to combat SARS-CoV and COVID-19.


Asunto(s)
Antivirales/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/química , SARS-CoV-2/química , Bibliotecas de Moléculas Pequeñas/química , Antivirales/metabolismo , Dominio Catalítico , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Descubrimiento de Drogas , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/metabolismo , Homología Estructural de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato , Termodinámica , Interfaz Usuario-Computador , Tratamiento Farmacológico de COVID-19
17.
ChemMedChem ; 15(20): 1921-1931, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: covidwho-670488

RESUMEN

Coronavirus disease 2019 (COVID-19) has spread out as a pandemic threat affecting over 2 million people. The infectious process initiates via binding of SARS-CoV-2 Spike (S) glycoprotein to host angiotensin-converting enzyme 2 (ACE2). The interaction is mediated by the receptor-binding domain (RBD) of S glycoprotein, promoting host receptor recognition and binding to ACE2 peptidase domain (PD), thus representing a promising target for therapeutic intervention. Herein, we present a computational study aimed at identifying small molecules potentially able to target RBD. Although targeting PPI remains a challenge in drug discovery, our investigation highlights that interaction between SARS-CoV-2 RBD and ACE2 PD might be prone to small molecule modulation, due to the hydrophilic nature of the bi-molecular recognition process and the presence of druggable hot spots. The fundamental objective is to identify, and provide to the international scientific community, hit molecules potentially suitable to enter the drug discovery process, preclinical validation and development.


Asunto(s)
Betacoronavirus/química , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2 , Antivirales/metabolismo , Betacoronavirus/metabolismo , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pandemias , Neumonía Viral/tratamiento farmacológico , Dominios Proteicos , SARS-CoV-2
18.
Mol Inform ; 39(8): e2000028, 2020 08.
Artículo en Inglés | MEDLINE | ID: covidwho-6872

RESUMEN

The recently emerged 2019 Novel Coronavirus (SARS-CoV-2) and associated COVID-19 disease cause serious or even fatal respiratory tract infection and yet no approved therapeutics or effective treatment is currently available to effectively combat the outbreak. This urgent situation is pressing the world to respond with the development of novel vaccine or a small molecule therapeutics for SARS-CoV-2. Along these efforts, the structure of SARS-CoV-2 main protease (Mpro) has been rapidly resolved and made publicly available to facilitate global efforts to develop novel drug candidates. Recently, our group has developed a novel deep learning platform - Deep Docking (DD) which provides fast prediction of docking scores of Glide (or any other docking program) and, hence, enables structure-based virtual screening of billions of purchasable molecules in a short time. In the current study we applied DD to all 1.3 billion compounds from ZINC15 library to identify top 1,000 potential ligands for SARS-CoV-2 Mpro protein. The compounds are made publicly available for further characterization and development by scientific community.


Asunto(s)
Infecciones por Coronavirus/patología , Simulación del Acoplamiento Molecular , Neumonía Viral/patología , Inhibidores de Proteasas/química , Bibliotecas de Moléculas Pequeñas/química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/química , Antivirales/metabolismo , Área Bajo la Curva , Betacoronavirus/aislamiento & purificación , Betacoronavirus/metabolismo , Sitios de Unión , COVID-19 , Infecciones por Coronavirus/virología , Descubrimiento de Drogas , Humanos , Enlace de Hidrógeno , Ligandos , Pandemias , Neumonía Viral/virología , Inhibidores de Proteasas/metabolismo , Curva ROC , SARS-CoV-2 , Bibliotecas de Moléculas Pequeñas/metabolismo , Proteínas no Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA